Chapter 9: More on Specification and Data Issues
library(wooldridge)
Example 9.1
data("crime1")
lm.9.1.1 <- lm(narr86 ~ pcnv + avgsen + tottime + ptime86 +
qemp86 + inc86 + black + hispan, data = crime1)
summary(lm.9.1.1)
##
## Call:
## lm(formula = narr86 ~ pcnv + avgsen + tottime + ptime86 + qemp86 +
## inc86 + black + hispan, data = crime1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.0108 -0.4518 -0.2392 0.2707 11.5284
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5686855 0.0360461 15.777 < 2e-16 ***
## pcnv -0.1332344 0.0403502 -3.302 0.000973 ***
## avgsen -0.0113177 0.0122401 -0.925 0.355233
## tottime 0.0120224 0.0094352 1.274 0.202698
## ptime86 -0.0408417 0.0088120 -4.635 3.74e-06 ***
## qemp86 -0.0505398 0.0144397 -3.500 0.000473 ***
## inc86 -0.0014887 0.0003406 -4.370 1.29e-05 ***
## black 0.3265035 0.0454156 7.189 8.38e-13 ***
## hispan 0.1939144 0.0397113 4.883 1.10e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8286 on 2716 degrees of freedom
## Multiple R-squared: 0.07232, Adjusted R-squared: 0.06959
## F-statistic: 26.47 on 8 and 2716 DF, p-value: < 2.2e-16
# Seems to be an error in the book.
# Although all coefficients and their standard errors are equal
# the intercept term is 0.569 instead of 0.596.
lm.9.1.2 <- lm(narr86 ~ pcnv + avgsen + tottime + ptime86 +
qemp86 + inc86 + black + hispan + pcnvsq +
pt86sq + inc86sq, data = crime1)
summary(lm.9.1.2)
##
## Call:
## lm(formula = narr86 ~ pcnv + avgsen + tottime + ptime86 + qemp86 +
## inc86 + black + hispan + pcnvsq + pt86sq + inc86sq, data = crime1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5248 -0.4646 -0.2151 0.2276 11.4286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.046e-01 3.684e-02 13.699 < 2e-16 ***
## pcnv 5.525e-01 1.542e-01 3.582 0.000347 ***
## avgsen -1.702e-02 1.205e-02 -1.412 0.158028
## tottime 1.195e-02 9.282e-03 1.288 0.197924
## ptime86 2.874e-01 4.426e-02 6.494 9.88e-11 ***
## qemp86 -1.409e-02 1.736e-02 -0.812 0.416970
## inc86 -3.415e-03 8.037e-04 -4.249 2.22e-05 ***
## black 2.923e-01 4.483e-02 6.520 8.35e-11 ***
## hispan 1.636e-01 3.945e-02 4.147 3.47e-05 ***
## pcnvsq -7.302e-01 1.561e-01 -4.677 3.05e-06 ***
## pt86sq -2.961e-02 3.863e-03 -7.664 2.50e-14 ***
## inc86sq 7.186e-06 2.556e-06 2.811 0.004969 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8151 on 2713 degrees of freedom
## Multiple R-squared: 0.1035, Adjusted R-squared: 0.09982
## F-statistic: 28.46 on 11 and 2713 DF, p-value: < 2.2e-16
anova(lm.9.1.1, lm.9.1.2)
## Analysis of Variance Table
##
## Model 1: narr86 ~ pcnv + avgsen + tottime + ptime86 + qemp86 + inc86 +
## black + hispan
## Model 2: narr86 ~ pcnv + avgsen + tottime + ptime86 + qemp86 + inc86 +
## black + hispan + pcnvsq + pt86sq + inc86sq
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2716 1865.0
## 2 2713 1802.4 3 62.589 31.404 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Example 9.2
data("hprice1")
lm.9.2.1 <- lm(price ~ lotsize + sqrft + bdrms, data = hprice1)
fit2.1 <- lm.9.2.1$fitted.values^2
fit3.1 <- lm.9.2.1$fitted.values^3
lm.9.2.1.reset <- lm(price ~ lotsize + sqrft + bdrms + fit2.1 + fit3.1, data = hprice1)
anova(lm.9.2.1, lm.9.2.1.reset)
## Analysis of Variance Table
##
## Model 1: price ~ lotsize + sqrft + bdrms
## Model 2: price ~ lotsize + sqrft + bdrms + fit2.1 + fit3.1
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 84 300724
## 2 82 269984 2 30740 4.6682 0.01202 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lm.9.2.2 <- lm(lprice ~ llotsize + lsqrft + bdrms, data = hprice1)
fit2.2 <- lm.9.2.2$fitted.values^2
fit3.2 <- lm.9.2.2$fitted.values^3
lm.9.2.2.reset <- lm(lprice ~ llotsize + lsqrft + bdrms + fit2.2 + fit3.2, data = hprice1)
anova(lm.9.2.2, lm.9.2.2.reset)
## Analysis of Variance Table
##
## Model 1: lprice ~ llotsize + lsqrft + bdrms
## Model 2: lprice ~ llotsize + lsqrft + bdrms + fit2.2 + fit3.2
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 84 2.8626
## 2 82 2.6940 2 0.16854 2.565 0.08308 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Table 9.2
data("wage2")
lm.t9.2.1 <- lm(lwage ~ educ + exper + tenure + married + south + urban +
black, data = wage2)
summary(lm.t9.2.1)
##
## Call:
## lm(formula = lwage ~ educ + exper + tenure + married + south +
## urban + black, data = wage2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.98069 -0.21996 0.00707 0.24288 1.22822
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.395497 0.113225 47.653 < 2e-16 ***
## educ 0.065431 0.006250 10.468 < 2e-16 ***
## exper 0.014043 0.003185 4.409 1.16e-05 ***
## tenure 0.011747 0.002453 4.789 1.95e-06 ***
## married 0.199417 0.039050 5.107 3.98e-07 ***
## south -0.090904 0.026249 -3.463 0.000558 ***
## urban 0.183912 0.026958 6.822 1.62e-11 ***
## black -0.188350 0.037667 -5.000 6.84e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3655 on 927 degrees of freedom
## Multiple R-squared: 0.2526, Adjusted R-squared: 0.2469
## F-statistic: 44.75 on 7 and 927 DF, p-value: < 2.2e-16
lm.t9.2.2 <- lm(lwage ~ educ + exper + tenure + married + south + urban +
black + IQ, data=wage2)
summary(lm.t9.2.2)
##
## Call:
## lm(formula = lwage ~ educ + exper + tenure + married + south +
## urban + black + IQ, data = wage2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.01203 -0.22244 0.01017 0.22951 1.27478
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.1764392 0.1280006 40.441 < 2e-16 ***
## educ 0.0544106 0.0069285 7.853 1.12e-14 ***
## exper 0.0141458 0.0031651 4.469 8.82e-06 ***
## tenure 0.0113951 0.0024394 4.671 3.44e-06 ***
## married 0.1997644 0.0388025 5.148 3.21e-07 ***
## south -0.0801695 0.0262529 -3.054 0.002325 **
## urban 0.1819463 0.0267929 6.791 1.99e-11 ***
## black -0.1431253 0.0394925 -3.624 0.000306 ***
## IQ 0.0035591 0.0009918 3.589 0.000350 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3632 on 926 degrees of freedom
## Multiple R-squared: 0.2628, Adjusted R-squared: 0.2564
## F-statistic: 41.27 on 8 and 926 DF, p-value: < 2.2e-16
lm.t9.2.3 <- lm(lwage ~ educ + exper + tenure + married + south + urban +
black + IQ + IQ*educ, data = wage2)
summary(lm.t9.2.3)
##
## Call:
## lm(formula = lwage ~ educ + exper + tenure + married + south +
## urban + black + IQ + IQ * educ, data = wage2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.00733 -0.21715 0.01177 0.23456 1.27305
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.6482483 0.5462963 10.339 < 2e-16 ***
## educ 0.0184559 0.0410608 0.449 0.653192
## exper 0.0139072 0.0031768 4.378 1.34e-05 ***
## tenure 0.0113929 0.0024397 4.670 3.46e-06 ***
## married 0.2008658 0.0388267 5.173 2.82e-07 ***
## south -0.0802354 0.0262560 -3.056 0.002308 **
## urban 0.1835758 0.0268586 6.835 1.49e-11 ***
## black -0.1466989 0.0397013 -3.695 0.000233 ***
## IQ -0.0009418 0.0051625 -0.182 0.855289
## educ:IQ 0.0003399 0.0003826 0.888 0.374564
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3632 on 925 degrees of freedom
## Multiple R-squared: 0.2634, Adjusted R-squared: 0.2563
## F-statistic: 36.76 on 9 and 925 DF, p-value: < 2.2e-16
Example 9.4
data("crime2")
lm.9.4.1 <- lm(lcrmrte ~ unem + llawexpc, data = crime2, subset = (d87==1))
summary(lm.9.4.1)
##
## Call:
## lm(formula = lcrmrte ~ unem + llawexpc, data = crime2, subset = (d87 ==
## 1))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.64786 -0.22955 -0.06368 0.22183 0.71164
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.34290 1.25053 2.673 0.0106 *
## unem -0.02900 0.03234 -0.897 0.3748
## llawexpc 0.20337 0.17265 1.178 0.2453
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3231 on 43 degrees of freedom
## Multiple R-squared: 0.05712, Adjusted R-squared: 0.01326
## F-statistic: 1.302 on 2 and 43 DF, p-value: 0.2824
lm.9.4.2 <- lm(lcrmrte ~ unem + llawexpc + lcrmrt_1, data = crime2, subset = (d87==1))
summary(lm.9.4.2)
##
## Call:
## lm(formula = lcrmrte ~ unem + llawexpc + lcrmrt_1, data = crime2,
## subset = (d87 == 1))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.48081 -0.12202 0.00659 0.14658 0.34428
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.076451 0.821143 0.093 0.926
## unem 0.008621 0.019517 0.442 0.661
## llawexpc -0.139576 0.108641 -1.285 0.206
## lcrmrt_1 1.193923 0.132099 9.038 2.1e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1905 on 42 degrees of freedom
## Multiple R-squared: 0.6798, Adjusted R-squared: 0.657
## F-statistic: 29.73 on 3 and 42 DF, p-value: 1.799e-10
Example 9.8
data("rdchem")
lm.9.8.1 <- lm(rdintens ~ sales + profmarg, data = rdchem)
summary(lm.9.8.1)
##
## Call:
## lm(formula = rdintens ~ sales + profmarg, data = rdchem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2221 -1.1414 -0.6068 0.5008 6.3702
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.625e+00 5.855e-01 4.484 0.000106 ***
## sales 5.338e-05 4.407e-05 1.211 0.235638
## profmarg 4.462e-02 4.618e-02 0.966 0.341966
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.862 on 29 degrees of freedom
## Multiple R-squared: 0.07612, Adjusted R-squared: 0.0124
## F-statistic: 1.195 on 2 and 29 DF, p-value: 0.3173
# See the outliers
with(rdchem, plot(sales, rdintens, pch = 16))
# Test without the biggest firm
lm.9.8.2 <- lm(rdintens ~ sales + profmarg, data = rdchem, subset = (sales < 30000))
summary(lm.9.8.2)
##
## Call:
## lm(formula = rdintens ~ sales + profmarg, data = rdchem, subset = (sales <
## 30000))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0687 -1.1867 -0.7956 0.6486 6.0811
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.2968508 0.5918045 3.881 0.000577 ***
## sales 0.0001856 0.0000842 2.204 0.035883 *
## profmarg 0.0478411 0.0444831 1.075 0.291336
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.792 on 28 degrees of freedom
## Multiple R-squared: 0.1728, Adjusted R-squared: 0.1137
## F-statistic: 2.925 on 2 and 28 DF, p-value: 0.07022
Hmmm, slightly different result than in the book
# Dummy for the biggest firm
big <- as.numeric(rdchem$sales == max(rdchem$sales))
lm.9.8.3 <- lm(rdintens ~ sales + profmarg + big, data = rdchem)
summary(lm.9.8.3)
##
## Call:
## lm(formula = rdintens ~ sales + profmarg + big, data = rdchem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0687 -1.1218 -0.6207 0.6384 6.0811
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.2968508 0.5918045 3.881 0.000577 ***
## sales 0.0001856 0.0000842 2.204 0.035883 *
## profmarg 0.0478411 0.0444831 1.075 0.291336
## big -6.5717169 3.6147274 -1.818 0.079773 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.792 on 28 degrees of freedom
## Multiple R-squared: 0.1737, Adjusted R-squared: 0.08513
## F-statistic: 1.962 on 3 and 28 DF, p-value: 0.1427
# Dummy for highest rdintens
hi.rdint <- as.numeric(rdchem$rdintens == max(rdchem$rdintens))
lm.9.8.4 <- lm(rdintens ~ sales + profmarg + hi.rdint, data = rdchem)
summary(lm.9.8.4)
##
## Call:
## lm(formula = rdintens ~ sales + profmarg + hi.rdint, data = rdchem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1920 -1.0442 -0.3307 0.5016 3.5413
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.193e+00 4.615e-01 4.753 5.45e-05 ***
## sales 5.057e-05 3.400e-05 1.487 0.1481
## profmarg 6.829e-02 3.600e-02 1.897 0.0681 .
## hi.rdint 6.718e+00 1.475e+00 4.555 9.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.436 on 28 degrees of freedom
## Multiple R-squared: 0.4693, Adjusted R-squared: 0.4125
## F-statistic: 8.255 on 3 and 28 DF, p-value: 0.0004321
lm.9.8.5 <- lm(rdintens ~ sales + profmarg, data = rdchem, subset = (rdintens < max(rdintens)))
summary(lm.9.8.5)
##
## Call:
## lm(formula = rdintens ~ sales + profmarg, data = rdchem, subset = (rdintens <
## max(rdintens)))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1920 -1.0711 -0.5777 0.5182 3.5413
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.193e+00 4.615e-01 4.753 5.45e-05 ***
## sales 5.057e-05 3.400e-05 1.487 0.1481
## profmarg 6.829e-02 3.600e-02 1.897 0.0681 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.436 on 28 degrees of freedom
## Multiple R-squared: 0.1716, Adjusted R-squared: 0.1125
## F-statistic: 2.9 on 2 and 28 DF, p-value: 0.07165
# Without first and tenth firm
lm.9.8.6 <- lm(rdintens ~ sales + profmarg,
data = rdchem,
subset = (sales < max(sales) & rdintens < max(rdintens)))
summary(lm.9.8.6)
##
## Call:
## lm(formula = rdintens ~ sales + profmarg, data = rdchem, subset = (sales <
## max(sales) & rdintens < max(rdintens)))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0667 -1.0609 -0.3414 0.6422 3.1439
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.939e+00 4.588e-01 4.226 0.000243 ***
## sales 1.596e-04 6.457e-05 2.472 0.020029 *
## profmarg 7.007e-02 3.433e-02 2.041 0.051116 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.369 on 27 degrees of freedom
## Multiple R-squared: 0.2711, Adjusted R-squared: 0.2171
## F-statistic: 5.021 on 2 and 27 DF, p-value: 0.014
Hmm, slighty different results
lm.9.8.7 <- lm(rdintens ~ sales + profmarg + big + hi.rdint, data = rdchem)
summary(lm.9.8.7)
##
## Call:
## lm(formula = rdintens ~ sales + profmarg + big + hi.rdint, data = rdchem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0667 -1.0604 -0.1891 0.6416 3.1439
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.939e+00 4.588e-01 4.226 0.000243 ***
## sales 1.596e-04 6.457e-05 2.472 0.020029 *
## profmarg 7.007e-02 3.433e-02 2.041 0.051116 .
## big -5.414e+00 2.773e+00 -1.953 0.061306 .
## hi.rdint 6.467e+00 1.412e+00 4.581 9.4e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.369 on 27 degrees of freedom
## Multiple R-squared: 0.535, Adjusted R-squared: 0.4661
## F-statistic: 7.766 on 4 and 27 DF, p-value: 0.0002664
Example 9.9
data("rdchem")
lm.9.9.1 <- lm(lrd ~ lsales + profmarg, data = rdchem)
summary(lm.9.9.1)
##
## Call:
## lm(formula = lrd ~ lsales + profmarg, data = rdchem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.97681 -0.31502 -0.05828 0.39020 1.21783
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.37827 0.46802 -9.355 2.93e-10 ***
## lsales 1.08422 0.06020 18.012 < 2e-16 ***
## profmarg 0.02166 0.01278 1.694 0.101
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5136 on 29 degrees of freedom
## Multiple R-squared: 0.918, Adjusted R-squared: 0.9123
## F-statistic: 162.2 on 2 and 29 DF, p-value: < 2.2e-16
# Without the largest firm
lm.9.9.2 <- lm(lrd ~ lsales + profmarg, data = rdchem, subset = (lsales < max(lsales)))
summary(lm.9.9.2)
##
## Call:
## lm(formula = lrd ~ lsales + profmarg, data = rdchem, subset = (lsales <
## max(lsales)))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.97871 -0.31809 -0.05582 0.38978 1.21104
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.40414 0.51102 -8.618 2.30e-09 ***
## lsales 1.08805 0.06711 16.212 9.21e-16 ***
## profmarg 0.02176 0.01302 1.670 0.106
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5225 on 28 degrees of freedom
## Multiple R-squared: 0.9037, Adjusted R-squared: 0.8968
## F-statistic: 131.4 on 2 and 28 DF, p-value: 5.877e-15
Example 9.10
data("infmrt")
lm.9.10.1 <- lm(infmort ~ lpcinc + lphysic + lpopul, data = infmrt, subset = (year==1990))
summary(lm.9.10.1)
##
## Call:
## lm(formula = infmort ~ lpcinc + lphysic + lpopul, data = infmrt,
## subset = (year == 1990))
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0811 -1.2064 -0.0521 1.0639 7.9589
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.85931 20.42785 1.658 0.10408
## lpcinc -4.68466 2.60412 -1.799 0.07845 .
## lphysic 4.15326 1.51266 2.746 0.00853 **
## lpopul -0.08782 0.28725 -0.306 0.76116
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.058 on 47 degrees of freedom
## Multiple R-squared: 0.1391, Adjusted R-squared: 0.08413
## F-statistic: 2.531 on 3 and 47 DF, p-value: 0.06841
lm.9.10.2 <- lm(infmort ~ lpcinc + lphysic + lpopul, data = infmrt, subset = (year==1990 & DC==0))
summary(lm.9.10.2)
##
## Call:
## lm(formula = infmort ~ lpcinc + lphysic + lpopul, data = infmrt,
## subset = (year == 1990 & DC == 0))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.49645 -0.81641 -0.05117 0.94204 2.60772
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23.9548 12.4195 1.929 0.05994 .
## lpcinc -0.5669 1.6412 -0.345 0.73134
## lphysic -2.7418 1.1908 -2.303 0.02588 *
## lpopul 0.6292 0.1911 3.293 0.00191 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.246 on 46 degrees of freedom
## Multiple R-squared: 0.2732, Adjusted R-squared: 0.2258
## F-statistic: 5.763 on 3 and 46 DF, p-value: 0.001967